Search results for "chromatin organization"

showing 3 items of 3 documents

Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis)

2021

Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural…

DNA Replication TimingQH301-705.5HeterochromatinEmbryonic DevelopmentReviewtranscriptional pulsingTopologyModels Biologicalpositional informationphysics of lifeCell Line TumorAnimalsHumansConstitutive heterochromatinNucleosomeEpigeneticsBiology (General)PhysicsReplication timingheterochromatincytoskeletonActomyosinGeneral MedicineGenetic codenucleolar boundaryRatsChromatinGene Expression RegulationOrgan SpecificitynetworksRNA splicingscale-free oscillationsChickensCell Nucleoluschromatin organizationCells
researchProduct

Histone Code and Higher-Order Chromatin Folding: A Hypothesis

2016

AbstractHistone modifications alone or in combination are thought to modulate chromatin structure and function; a concept termed histone code. By combining evidence from several studies, we investigated if the histone code can play a role in higher-order folding of chromatin. Firstly using genomic data, we analyzed associations between histone modifications at the nucleosome level. We could dissect the composition of individual nucleosomes into five predicted clusters of histone modifications. Secondly, by assembling the raw reads of histone modifications at various length scales, we noticed that the histone mark relationships that exist at nucleosome level tend to be maintained at the high…

GenomicsSolenoid (DNA)Computational biologyChromatin remodelingArticleepigenetic regulationchemistry.chemical_compoundHistone H1super-resolution microscopyHistone methylationHistone H2ANucleosomeHistone codemeiosishistone modificationHistone octamerEpigeneticsGeneticsbiologynucleosomeFolding (DSP implementation)ChromatinHistonechemistrychromatin foldinghistone codebiology.proteinDNAchromatin organizationGenomics and computational biology
researchProduct

A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation

2023

During embryonic development stem cells undergo the differentiation process so that they can specialise for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, by the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role played in neurogenesis by the nuclear lamina that ensures the tethering o…

Settore BIO/18 - GeneticaepigeneticsGeneticsneuronal differentiationGenetics (clinical)nuclear laminachromatin organization
researchProduct